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Abstract

In hyperthermia cancer treatments, a crucial problem is keeping the temperature of the normal tissue surrounding the tumor below a
certain threshold so as not to cause damage to the tissue. Thus, obtaining a temperature field of the entire treatment region is important
to control the process. In this study we develop a model and a numerical method for obtaining an optimal temperature distribution in a
triple-layered skin structure embedded with multi-level blood vessels. The heat is induced by electromagnetic (EM) radiation. The dimen-
sions and blood flow of multi-level blood vessels are determined based on the constructal theory.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Conventional hyperthermia (target temperatures of 42–
46 �C) in conjunction with radiation has demonstrated
increased effectiveness in the treatment of certain types of
cancer, such as skin cancer [1]. The objective is to control
heating of the tumor so that the temperature of the normal
tissue surrounding the tumor remains low enough so as not
to cause damage to the tissue. Hence, for process control, it
is important to obtain a temperature field of the entire
treatment region. With knowledge of the entire tempera-
ture field in the treatment region, clinical personnel can
potentially control the heating source to deliver energy to
the treatment target volume to raise its minimum tempera-
ture above 42 �C, while limiting the temperatures in the
normal tissue to prevent damage. However, it is not easy
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to obtain an accurate determination of the temperature
field over the entire treatment region during clinical hyper-
thermia treatments, because the number of invasive tem-
perature probes that can be used is limited due to the
pain tolerance of patients. Furthermore, to ensure that
the temperature is within the desired range, the clinician
usually monitors the temperature every few seconds by
pressing the hold button of the thermocouple needle, and
at the same time keeps the thermocouple needle away from
the light spot. Thus, it is desirable to develop a mathemat-
ical method that can determine the power intensity and the
pattern of laser or radiation exposure in order to optimize
the temperature distribution in the target region before
treatment. In this manner, the treatment efficiency can be
assessed more precisely.

Since the determinants of temperature distributions
during thermal therapy include the power deposition pat-
tern of the heating source, heat removal by conduction,
and heat removal by blood flow forced convection,
numerical methods must be developed to solve the bioheat
transfer equation in the targeted region [2]. Although
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Nomenclature

Bi Biot number
Cl, Cl

b specific heat of tissue and blood in layer l
CB heat capacity of blood
c0 the speed of light in free space
D electric flux density
E electric field intensity
Fm area of cross-section in the mth level vessel
f frequency of the EM wave
H magnetic field density
h heat convection coefficient
kl heat conductivity of layer l

Ll thickness of layer l

Lm
b length of the blood vessel in level m along the

flowing direction of blood
Mm main flow of blood in the mth level vessel
Nx, Ny, Nz

l numbers of grid points in the x, y, z direc-
tions, respectively

NX, NY lengths of the skin structure in the x, y direc-
tions, respectively

NLm
b , NWm

b length and width of the cross-section of the
mth level vessel

P vessel periphery
_P blood flow rate
Ql

r heat source in layer l

S sum of least squares
t time
un

ijk numerical solution of temperature elevation of
tissue

um
b numerical solution of temperature elevation of

blood in the mth level vessel
vm velocity of blood flow in the mth level vessel
W l

b blood perfusion rate in layer l

x, y, z Cartesian coordinates
d2

x , d2
y , d2

z second-order finite difference (FD) operators
Dx, Dy, Dz mesh sizes of FD scheme for bioheat transfer

model in the x, y, z directions
Dx, Dy, dz mesh sizes of finite difference time domain

scheme in the x, y, z directions
Dt time increment used in calculating heat transfer
dt time increment used in calculating EM wave
ql density of layer l

hm
b , hl, hm

w temperature elevations in blood, tissue, and
vessel wall, respectively

hin, hout temperature elevations of blood at entrance and
exit, respectively

e0 permittivity of free space
l0 permeability of free space
e�r relative dielectric constant
e1 permittivity in the terahertz frequency range
De drop in permittivity in the frequency range
r1 ionic conductivity
am adjustable parameter between 0 and 1,

m = 1,2,3,4
s relaxation time
x angular frequency
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there are many studies on laser, radio-frequency, or
micro-wave induced hyperthermia [1–21], the numerical
model for electromagnetic-wave induced hyperthermia in
triple-layered skin structures composed of epidermis,
dermis and subcutaneous embedded with multi-level
blood vessels has not been studied. This research is impor-
tant for certain types of cancer treatment, such as skin
cancer.

Recently, we [22,23] have developed a numerical method
for obtaining optimal temperature distributions in a 3D tri-
ple-layered skin structure embedded with multi-level blood
vessels. The heat is induced by a laser and the dimensions
and blood flow of the multi-level blood vessels are deter-
mined based on the recently developed constructal theory
of multi-scale tree-shaped heat exchangers [24–26]. In this
article, we extend our research to the case that the heat is
induced by electromagnetic radiation. This involves an
inverse prediction of the EM wave power input over time
in order to control the temperature field so that it is in
agreement with a pre-specified temperature required for
treatment. The heat generation is calculated based on Max-
well’s equations coupled with the Cole–Cole expression
[27,28] for the frequency dependence of the dielectric prop-
erties of tissue.
2. Model

2.1. Bioheat transfer model

Based on histological knowledge, the largest arteries of
the skin are arranged in the form of a flat network in the
subcutaneous tissue, immediately below the dermis. The
dermis is very sparingly supplied with capillaries and the
capillary beds of skin lie immediately under the epidermis
[29]. Fig. 1 shows a realistic skin structure configuration.

To simplify our computation, we consider the target
region to be a rectangular structure embedded with two
countercurrent multi-level blood vessels that cross through
the subcutaneous layer from the bottom to the top, as
shown in Fig. 2. In this figure, only large blood vessels
can be seen in the subcutaneous because the dermis layer
consists of only capillaries and the contribution of these
small vessels to the heat transfer could be ignored [21].

In Fig. 2, the basic arterial model consists of the large
central vessel (level 1) running lengthwise (in the z-direc-
tion) along the control volume. This vessel has a horizontal
(in the x-direction) vessel (level 2) branching from it. The
second vessel goes to third vessel (level 3) which runs again
lengthwise (in the z-direction). The second vessel does not



Fig. 1. Skin structure and its components [42].

Fig. 2. Configuration of a 3D skin structure.
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branch into two third vessels and the diameters of these
also are the same, which are similar to those in [6]. These
vessels are modeled as slim cuboids for simplicity. The
diameters of the arteries are assumed to be decreasing by
a constant ratio c between successive levels of branched
vessels, which is given by [25],

c ¼ NL2
b

NL1
b

¼ NW2
b

NW1
b

¼ 2�
1
3; ð1Þ

where NLm
b and NWm

b are the length and width of the cross-
section of a blood vessel in level m, respectively. The length
of blood vessel is assumed to be double after two consecu-
tive construction steps, which can be expressed in the
length-doubling rule [26] as follows:

Lm
b ¼ 2

1
2Lmþ1

b ; m ¼ 1; 2; ð2Þ
where Lm

b is the length of the blood vessel in level m. The
mass flow of blood in the mth level vessel, Mm = vmFm, is
assumed to satisfy [26],

M1 ¼ 2M2; M2 ¼ M3; ð3Þ
where vm is the velocity of blood flow and Fm (¼ NLm
b�

NWm
b ) is the area of the cross-section in the mth level vessel.

Furthermore, the temperature elevation of blood in the
cross-section of a vessel is assumed to be uniform. We fur-
ther assume that a steady-state energy balance in the blood
vessel can be reached because the length of the considered
blood vessel is relatively short and the blood velocity is rel-
atively high. However, one may use a transient heat trans-
fer equation for a more accurate solution. Hence, the
convective energy balance equations which are used to cal-
culate the main artery (levels 1 and 2) elevated blood tem-
peratures can be expressed as [7,10]

CBM1

dðh1
bÞ

dz
� aP 1ðh1

w � h1
bÞ ¼ 0 ð4Þ

and

CBM2

dðh2
bÞ

dx
� aP 2ðh2

w � h2
bÞ ¼ 0; ð5Þ

where CB is the heat capacity of blood, and a is the heat
transfer coefficient between blood and tissue, and Pm is
the vessel perimeter. Further, hm

w and hm
b are the wall tem-

perature elevation and the blood temperature elevation in
the mth level vessel. For the smallest, terminal arterial ves-
sels (level 3), a decreased blood flow rate ð _P Þ is included in
the energy balance equation [7,10]

CBM3

dðh3
bÞ

dz
� aP 3ðh3

w � h3
bÞ � _PCBF h3

b ¼ 0: ð6Þ

For simplicity, the venous model is taken to be similar to
as the arterial model except that the blood velocity in the
vein is opposite to that in the artery to account for the
countercurrent flowing in these two kinds of vessels, as
shown in Fig. 2. Also, the diameter ratio, length ratio,
and mass flow ratio of the blood between the successive lev-
els of the branched veins take the same form as described in
Eqs. (1)–(3) for the arteries. Moreover, the convective
energy balance Eqs. (4)–(6) used to calculate the blood tem-
perature elevations in the artery domain is applied to the
vein domain at the corresponding levels.

The modified Pennes equation that describes the thermal
behavior in the triple-layered skin structure when irradi-
ated by the electromagnetic wave can be expressed as fol-
lows [30]:

qlCl
ohl

ot
þ W l

bCl
bðhl � houtÞ � kl

o
2hl

ox2
þ o

2hl

oy2
þ o

2hl

oz2

� �
¼ Ql

r;

l ¼ 1; 2; 3; ð7Þ

where hl is the tissue temperature elevation due to heating
induced by electromagnetic wave; hout is the blood temper-
ature elevation at exit or entrance of the third level vessel
for the artery or vein respectively; ql, Cl and kl denote den-
sity, specific heat, and thermal conductivity of tissue,
respectively; Cl

b is the specific heat of blood; W l
b is the

blood perfusion rate; and Ql
r is the volumetric heat due

to spatial heating.
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On the skin surface, we assume that the heat exchange
with the surroundings is

k1
oh1

oz
¼ hðh1 � hairÞ; z ¼ 0: ð8Þ

For simplicity, we assume that the heat flux approaches
zero as the tissue depth increases, which is realistic for a
biological body [31]. The other boundary conditions in
the tissue are assumed to be

ohl

o~n
¼ 0; ð9Þ

where ~n is the unit outward normal vector on the bound-
ary. At the entrance to the first level vessel, we have

h1
b ¼ hin; ð10Þ

where hin is the blood temperature elevation at the entrance
of the artery. At the exit of the artery, we assume that the
blood temperature elevation is equal to the surrounding tis-
sue temperature elevation

h3
b ¼ hout: ð11Þ

As mentioned earlier, the velocity of the vein blood has an
opposite direction to that of the artery blood. Thus, the en-
trance of the blood to the vein is located at the third level
and the blood temperature elevation is equal to the sur-
rounding tissue temperature elevation.

The continuity of heat transfer between the lateral blood
vessel and the tissue requires [32]

ohm
b

o~n
¼ Biðhm

w � hm
b Þ: ð12Þ

The interfacial continuity between layers are

h1 ¼ h2; k1

oh1

oz
¼ k2

oh2

oz
; z ¼ L1; ð13aÞ

h2 ¼ h3; k2

oh2

oz
¼ k3

oh3

oz
; z ¼ L1 þ L2: ð13bÞ

The initial condition is

hl ¼ 0; t ¼ 0; l ¼ 1; 2; 3: ð14Þ
2.2. Heat source

The heat source can be obtained based on the electro-
magnetic fields and the conversion of electromagnetic
energy into heat. The distribution of electromagnetic fields
in space and time is governed by the ‘‘normalized” Maxwell’s
equations as follows:

o~D
ot
¼ 1ffiffiffiffiffiffiffiffiffi

e0l0

p ~r� ~H ; ð15Þ

~DðxÞ ¼ e�r ðxÞ �~EðxÞ; ð16Þ
o~H
ot
¼ � 1ffiffiffiffiffiffiffiffiffi

e0l0

p ~r�~E; ð17Þ
where ~DðxÞ ¼ ð 1
e0l0
Þ1=2

DðxÞ is the electric flux density,
~EðxÞ ¼ ðe0

l0
Þ1=2

EðxÞ is the electric density, ~H is the magnetic
density, e0 is the permittivity of free space, l0 is the perme-
ability of free space, x is the angular frequency, and e�r ðxÞ
is the relative dielectric constant which can be expressed
[27,28]:

e�r ðxÞ ¼ e1 þ
X4

m¼1

Dem

1þ ðjxsmÞ1�am
þ r1

jxe0

; ð18Þ

where e1 is the permittivity in the terahertz frequency
range, r1 is the ionic conductivity, and j ¼

ffiffiffiffiffiffiffi
�1
p

; and for
each dispersion region m, sm is the relaxation time, am is
an adjustable parameter between 0 and 1, and Dem is the
drop in permittivity in the frequency range. Eq. (18), which
is called the Cole–Cole expression, is based on the well-
known dispersive properties of biological matter and their
expression as a summation of terms corresponding to the
main polarization mechanisms [33]. The dielectric spectrum
extends from Hz to GHz and shows four major regions of
dispersion [28]. The complexity of the structure and com-
position of biological material is such that each dispersion
region is broadened by multiple contributions to it and
therefore can be described by the Cole–Cole expression.
With a choice of parameters appropriate to each tissue,
Eq. (18) can be used to predict its dielectric behavior over
the desired frequency range [28]. Solving Maxwell’s equa-
tions coupled with the Cole–Cole expression by using the
finite difference time domain (FDTD) method, however,
is difficult because it is not easy to convert the equations
from the frequency domain to the time domain when
0 < a < 1.

The dissipated density is the electromagnetic wave
energy absorbed in the material. It is eventually converted
into thermal energy. The dissipated power density is influ-
enced by the field intensity distribution and electric proper-
ties. The heat function, Ql

r, which will be included as a
source term in the bioheat transfer equation, Eq. (7), can
be expressed as [34]:

Ql
r ¼ xe0e

00
eff j~Ej

2 þ xl0l
00
eff j~H j

2
; ð19Þ

where e00eff and l00eff are relative loss factors related to dipo-
lar, electronic, atomic, space charge and conduction losses.
In the case of dielectric materials, there are no magnetic
losses and the second term on the right-hand side of the
above equation is negligible. In our study, a sinusoidal
wave is considered as

Ez ¼ E0 sinð2pf � tÞ; ð20Þ

where E0 is the amplitude of the incident wave, f is the fre-
quency of the wave, and t is time. Consequently, the
volumetric heating rate can be computed from peak field
amplitudes as [34]

Ql
r ¼

1

2
xe0e

00
eff j~Emaxj2; ð21Þ

where e00eff is obtained based on Eq. (18) as follows:
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e00eff ¼
X4

m¼1

DemðxsmÞ1�am cos 1
2
amp

� �
1þ 2ðxsmÞ1�am sin 1

2
amp

� �
þ ðxsmÞ2ð1�amÞ

þ r1

xe0

:

ð22Þ
3. Numerical method

3.1. Finite difference scheme for bioheat transfer model

The finite difference scheme used for the above bioheat
transfer model is similar to that developed in [23]. For
the purpose of algorithm description later, we still list the
scheme in this section. We denote ðulÞnijk and ub the numer-
ical approximations of (hl) (iDx, jDy, kDz, nDt) and hb,
where Dx, Dy, Dz, and Dt are the spatial and temporal mesh
sizes, and i, j, k are integers with 0 6 i 6 Nx, 0 6 j 6 Ny,
0 6 k 6 N z

l, so that NxD x = NX, NyDy = NY, and
Nz

lDz ¼ Ll, l = 1,2,3. In this mesh, we assume that
ðu3Þnijk ¼ ðum

b Þijk when the grid point (i, j,k) is in the mth level
blood vessel. Because Eqs. (4)–(6) are first-order ordinary
differential equations once hm

w is determined, they can be
solved by using the fourth-order Runge–Kutta method
[35]. Eq. (7) is discretized as follows:

qlCl

ðulÞnþ1
ijk � ðulÞnijk

Dt
þ W l

bCl
b

ðulÞnþ1
ijk þ ðulÞnijk

2
� ðubÞout

" #

¼ klðd2
x þ d2

y þ d2
z Þ
ðulÞnþ1

ijk þ ðulÞnijk

2
þ ðQl

rÞ
nþ1

2
ijk ;

l ¼ 1; 2; 3; ð23Þ

where d2
xuijk ¼ uiþ1jk�2uijkþui�1jk

Dx2 and so on for the y and z direc-
tions. The discrete interfacial equations for Eqs. (13a) and
(13b) are assumed to be, for any time level,

k1

ðu1ÞnijNz
1
� ðu1ÞnijNz

1
�1

Dz
¼ k2

ðu2Þnij1 � ðu2Þnij0

Dz
;

ðu1ÞnijNz
1
¼ ðu2Þnij0; ð24aÞ

and when the grid point (i, j) is in the tissue

k2

ðu2ÞnijNz
2
� ðu2ÞnijNz

2
�1

Dz
¼ k3

ðu3Þnij1 � ðu3Þnij0

Dz
;

ðu2ÞnijNz
2
¼ ðu3Þnij0: ð24bÞ

The interfacial condition, Eq. (12), between the tissue and
the lateral blood vessel is discretized as follows:

ðu3Þnþ1
ijk ¼ ðu3Þnþ1

iþ1jkþBi �Dx � ðu3Þnþ1
i�1jk

h i.
ð1þBi �DxÞ; ð25aÞ

ðu3Þnþ1
ijk ¼ ðu3Þnþ1

ijþ1kþBi �Dy � ðu3Þnþ1
ij�1k

h i.
ð1þBi �DyÞ; ð25bÞ

ðu3Þnþ1
ijk ¼ ðu3Þnþ1

ijkþ1þBi �Dz � ðu3Þnþ1
ijk�1

h i.
ð1þBi �DzÞ; ð25cÞ

where the grid point (i, j, k) is on the lateral walls of the
blood vessel in the x, y, z directions, respectively. When
the grid point (i, j, k) is in the tissue, the initial and other
boundary conditions are discretized as follows:
ðulÞ0ijk ¼ 0; ð26aÞ
ðulÞn0jk ¼ ðulÞn1jk; ðulÞnNxjk ¼ ðulÞnNx�1jk; ð26bÞ
ðulÞni0k ¼ ðulÞni1k; ðulÞniNy k ¼ ðulÞniNy�1k ð26cÞ

k1

ðu1Þnij1 � ðu1Þnij0

Dz
¼ hððu1Þnij0 � hairÞ; ð26dÞ

ðu3ÞnijNz
3
¼ ðu3ÞnijNz

3
�1; ð26eÞ

for any time level n.
3.2. Finite difference time domain method for EM fields

Since e�r ðxÞ given by Eq. (18) is a complicated expres-
sion, we employ the z-transform described in [36] to sim-
plify the situation. Letting xðtÞ ¼

P1
n¼0xðnDtÞdðt � nDtÞ,

its z-transform is defined as X ðzÞ ¼
P1

n¼0xðnDtÞz�n �
ZðxðtÞÞ. It can be seen that Z(x(t � Dt)) = z�1X(z) (which
means that the inverse z-transform of z�1X(z) is x(t � Dt)),
and jx can be replaced by 1�z�1

Dt in the z-transform [36].
Applying the z-transform method to Eq. (16), where
e�r ðxÞ is given by Eq. (18), we obtain

~DðzÞ ¼ e1~EðzÞ þ
De1

~EðzÞ
1þ s1

Dt

� �1�a1ð1� z�1Þ1�a1

þ De2
~EðzÞ

1þ s2

Dt

� �1�a2ð1� z�1Þ1�a2

þ De3
~EðzÞ

1þ s3

Dt

� �1�a3ð1� z�1Þ1�a3

þ De4
~EðzÞ

1þ s4

Dt

� �1�a4ð1� z�1Þ1�a4
þ r1Dt

e0

�
~EðzÞ

1� z�1
: ð27Þ

~DðzÞ is very complicated and difficult to transform back to
the time domain. This difficulty can be overcome by letting

~IðzÞ ¼ r1Dt
e0

�
~EðzÞ

1� z�1
; ~S1ðzÞ ¼

De1
~EðzÞ

1þ s1

Dt

� �1�a1ð1� z�1Þ1�a1
;

ð28Þ

with similar expressions for ~S2ðzÞ, ~S3ðzÞ and ~S4ðzÞ. From
Eq. (28), we have

~IðzÞ ¼ r1Dt
e0

~EðzÞ þ z�1~IðzÞ;

~S1ðzÞ 1þ s1

Dt

� �1�a1

ð1� z�1Þ1�a1

� �
¼ De1

~EðzÞ: ð29Þ

It is noteworthy that if a1 is not 0 or 1, then powers of z in
Eq. (27) are not integers. This complicates determination of
the time steps when Eq. (29) is converted back to the time
domain. The situation is simplified by employing a second-
order Taylor approximation as follows:

ð1� z�1Þ1�a1 � 1� ð1� a1Þz�1 � 1

2
ð1� a1Þa1z�2: ð30Þ
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Substituting Eq. (30) into Eq. (29) and rearranging terms,
we obtain

~S1ðzÞ ¼
ðs1

Dt Þ
1�a1

1þ s1

Dt

� �1�a1
ð1� a1Þz�1~S1ðzÞ þ

1

2
ð1� a1Þa1z�2~S1ðzÞ

� �

þ De1

1þ s1

Dt

� �1�a1

~EðzÞ:

ð31Þ
Similar expressions are obtained for ~S2ðzÞ, ~S3ðzÞ and ~S4ðzÞ.
Substituting these results into Eq. (27), we obtain

~DðzÞ ¼ A~EðzÞ þ
X4

m¼1

Bm

�
ð1� amÞz�1~SmðzÞ

þ 1

2
ð1� amÞamz�2~SmðzÞ

�
þ z�1~IðzÞ; ð32Þ
where

A ¼ e1 þ
r1Dt
e0

þ
X4

m¼1

Dem

1þ sm
Dt

� �1�am
; ð33Þ
Fig. 3. Diagram of the com
~SmðzÞ ¼ Bm ð1� amÞz�1~SmðzÞ þ
1

2
ð1� amÞamz�2~SmðzÞ

� �

þ Dem

1þ sm
Dt

� �1�am
; ð34Þ

Bm ¼
sm
Dt

� �1�am

1þ sm
Dt

� �1�am
; m ¼ 1; 2; 3; 4: ð35Þ

Hence, we can transform Eq. (32) back to the time domain
and obtain ~E at time step n

~En ¼ 1

A
~Dn �~In�1 �

X4

m¼1

Bm ð1� amÞ~Sn�1
m þ 1

2
ð1� amÞam

~Sn�2
m

� �( )
;

ð36Þ

where~In and ~Sn
m ðm ¼ 1; 2; 3; 4Þ are calculated as follows:

~In ¼ r1Dt
e0

~En þ~In�1; ð37Þ

~Sn
m ¼ Bm ð1� amÞ~Sn�1

m þ 1

2
ð1� amÞam

~Sn�2
m

� �

þ Dem

1þ sm
Dt

� �1�am
~En: ð38Þ
putational algorithm.
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Finally, we can employ the finite difference time domain
(FDTD) method coupled with the perfectly matched layer
technique [36] to obtain the EM fields. It should be pointed
out that the applicability of the new FDTD solver has been
tested in [37,38].
3.3. Inverse method for obtaining power intensity

To determine the amplitude E0 of the EM wave so that
an optimal temperature distribution can be obtained, we
pre-specify the temperature elevations to be obtained at
the center and some locations in the perimeter on the skin
Table 1
Parameters for a 3D skin structure [6,22,23,31]

Parameters Values Parameters Values

a (W/cm2 �C) 0.2 k2 (W/cm �C) 0.0052
C1 (J/g �C) 3.6 k3 (W/cm �C) 0.0021
C2 (J/g �C) 3.4 _P (1/s) 0.5 � 10�3

C3 (J/g �C) 3.06 v1 (m/s) 0.08

C1
b (J/g �C) 0 W 1

b (g/cm3 s) 0

C2
b (J/g �C) 4.2 W 2

b (g/cm3 s) 0.0005

C3
b (J/g �C) 4.2 W 3

b (g/cm3 s) 0.0005

CB (J/cm3 �C) 4.134 q1 (g/cm3) 1.2
h (W/cm2) 0.001 q2 (g/cm3) 1.2
k1 (W/cm �C) 0.0026 q3 (g/cm3) 1

Table 2
Dielectric properties of human skin [28,40]

Parameters in the Cole–Cole expression Values

e1 4.0
r1 0.0002
De1 32
De2 1100
De3 0
De4 0
s1 (ps) 7.23
s2 (ns) 32.48
s3 (ls) 0
s4 (ms) 0
a1 0.1
a2 0.2
a3 0
a4 0

Table 3
Parameters used in computation

Parameters Values Parameters Values

Bi ¼ a
k3

95.23 NL2
b, NW2

b, (cm) 0.08
L1 (cm) 0.008 NL3

b, NW3
b (cm) 0.08

L2 (cm) 0.2 x1 1
L3 (cm) 1.0 Dx (cm) 0.02

L1
b (cm) 0.4 Dy (cm) 0.02

L2
b (cm) 0.28 Dt (s) 0.1

L3
b (cm) 0.2 dt (s) 3.3333 � 10�14

NX, NY (cm) 0.5 Dz (cm) 0.002
NL1

b, NW1
b (cm) 0.1 dz (cm) 0.004
surface. The reason that these locations are chosen is
because the hottest temperature is assumed to be around
the center of skin surface, and it is insured to have the tem-
perature in the perimeter below a certain threshold so as
not to cause damage to the normal tissue, as well as the
temperature could be easily measured on these locations.
By guessing an initial amplitude E0 and pre-specifying the
EM wave exposure pattern, one may solve the above equa-
tions to obtain a temperature field in the entire 3D skin
structure. Once the calculated temperatures, ui

cal; at the
given locations (i = 0,1, . . . ,M) are obtained, a least
squares approach can be employed to minimize the differ-
ence between the pre-specified temperature elevation hpre

and the calculated temperature ucal as follows:

SðE0Þ ¼
XM

i¼0

ðhi
pre � ui

calÞ
2
; i ¼ 0; 1; . . . ;M : ð39Þ
By minimizing S(E0) in Eq. (39), a new E0 can be calculated
iteratively as follows [39]:

EðJþ1Þ
0 ¼ EðJÞ0 þ ðX tX þ a�IÞ�1X tðh

*

pre � u
*

calÞ; ð40Þ
Fig. 4. Number of iterations versus (a) amplitude of the input wave E0

and (b) sum of least squares.
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where a* is a relaxation parameter, I is an identity matrix,

and X is the sensitivity coefficient matrix, h
*

pre and u
*

cal are
vectors consisted of hi

pre and ui
cal, respectively.

3.4. Algorithm

The algorithm for calculating the required amplitude
E0 in order to obtain the pre-specified temperature eleva-
tions at given locations on the skin surface after a pre-
specified EM wave exposure time can be described as
follows:

Step 1. Pre-specify the temperature elevations hi
pre at

given (M + 1) grid points i = 0,1, . . . ,M, on the skin sur-
face, and pre-specify the EM wave exposure pattern.
Guess an initial amplitude E0 of the EM wave and its
small increment DE0.
Fig. 5. Profiles of temperature elevations at t = 400 s: (a) in the x-direction at y =
skin surface, and (c) along the depth (the z-direction) at three locations.
Step 2. Run the new FDTD solver until the steady-state
(pure-time harmonic) is sufficiently well approximated
and the power distribution Qr is convergent.
Step 3. Guess the wall temperature of the blood vessel
hm

w. Obtain first the blood temperature hm
b ; by solving

Eqs. (4)–(6) using the fourth-order Runge–Kutta
method. Then obtain the temperature distribution ~ucal

in the entire 3D skin structure by solving Eq. (23) with
the interfacial Eqs. (24a) and (24b), and the initial and
boundary conditions, Eqs. (26a)–(26e). It should be
pointed out that in our computation for obtaining ~ucal,
we employ a preconditioned Richardson iteration as
described in [22] so that the linear system can be trans-
ferred into many tridiagonal linear systems. When the
grid point (i, j,k) is in the mth level blood vessel, we let
ðu3Þnijk ¼ ðum

b Þijk and hence Thomas algorithm can be
used line by line along the z-direction.
0.6 cm on the skin surface, (b) in the y-direction at x = 0.6 cm on the
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Step 4. Update the wall temperature of the blood vessel,
hm

w, by Eqs. (25a)–(25c).
Step 5. Repeat steps 3 and 4 until a convergent solution,
~ucal, at time level n + 1 is obtained.
Step 6. Determine a new E0 based on Eq. (40).

Repeat the computation until the criterion, jSðEðJþ1Þ
0 Þj <

e, for convergence is satisfied.
A diagram of the algorithm can be seen in Fig. 3.

4. Numerical example

We tested our algorithm in a 3D skin structure as
shown in Fig. 2, where the parameter values were chosen
from Tables 1–3. The test was conducted by using the
plane wave to illuminate the skin as shown in Fig. 2.
The plane wave was driven at 10 GHz. The grid size, dz,
in the z-direction for the new FDTD scheme was chosen
Fig. 6. Contours of the temperature elevations at t = 400 s in the cross-secti
y = 0.6 cm, (c) at y = 0.66 cm where the vein is located, and the cross-section
to be twice as long as the grid size, Dz, used for the finite
difference scheme for the bioheat transfer model. The
computational domain, which includes the plane wave
and was used to obtain the EM fields, was computed in
a lattice with grid points 75 � 75 � 320 in (x,y,z). The
plane wave resides in a lattice with dimensions 3 �
3 � 310 in (x,y,z) along the center line of the z-direction.
On the other hand, the computational domain for obtain-
ing the temperature distribution in the 3D skin struc-
ture was placed in a lattice with grid points 60 � 60 �
604 in (x,y,z). The temperature elevation of blood
at entrance was assumed to be 1 �C. The temperature
elevation at the center of the skin surface was pre-specified
to be 8 �C and the temperature elevation at the midpoint
on each edge of the skin surface was pre-specified to be
2 �C . In our computation, we considered that there was
heat convection on the skin surface (h = 0.001 W/cm2

[6]).
ons of the xz-plane: (a) at y = 0.5 cm where the artery is located, (b) at
of the yz-plane at x = 0.6 cm.
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The pattern of plane wave illumination was designed as
follows: A plane wave was generated in the xy plane
between the 5th grid point and the 315th grid point along
the z-direction. When the temperature elevation at the cen-
ter of the skin surface rose to 8 �C, the plane wave was
turned off to allow heat to diffuse from the center towards
the perimeter of the region. The plane wave was then
turned on when the temperature elevation at the center of
the skin surface decreased to 7 �C. The whole process
lasted 400 s.

We started at an initial value Eð0Þ0 of 2000 V/m. At the
first step, DEð0Þ0 was chosen to be 1% of Eð0Þ0 and then
DEðJÞ0 ¼ EðJÞ � EðJ�1Þ. We optimized E0 based on the algo-
rithm described in the previous section. The criterion for

convergence is jSðEðJþ1Þ
0 Þj < 0:001. Fig. 4 shows E0 and

sum of least squares versus iteration, respectively. It can
Fig. 7. Profiles of temperature elevations at t = 400 s: (a) in the x-direction at y

the z-direction (depth) at the center of the skin surface.
be seen that E0 is convergent to 1941.8456 V/m. Thus, we
used the convergent value of E0 to compute the tempera-
ture distribution in the 3D skin structure.

Fig. 5 shows the temperature elevation profiles at
t = 400 s along the lines y = 0.6 cm and x = 0.6 cm on
the skin surface, and along the depth (the z -direction),
respectively. It can be seen that the temperature elevation
at the center of the skin surface rises to 8 �C while the tem-
perature elevation at the edge rises to 2 �C.

Fig. 6 shows the contours of the temperature elevation
distributions at t = 400 s in these xz-cross-sections at
y = 0.5 cm where the artery is located, at y = 0.66 cm
where the vein is located, at y = 0.6 cm, and the yz-cross-
section at x = 0.6 cm, respectively. It can be seen from this
figure that the temperature profiles are symmetric in the xz-
cross-section at y = 0.6 cm, and the temperature elevations
= 0.6 cm, (b) in the y-direction at x = 0.6 cm on the skin surface, and (c) in
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around the region where the vein is located are higher than
those around the region where the artery is located. This
implies that the vein is carrying the heat out from the
heated blood.

Fig. 7 shows the three temperature elevation profiles at
t = 400 s (a) in the x-direction at y = 0.6 cm, and (b) in
the y-direction at x = 0.6 cm on the skin surface, and (c)
the depth (z-direction) at the center of the skin surface. It
can be from this figure that the solution is convergent as
the mesh is getting finer.

5. Conclusion

In this study we have developed a model and a numeri-
cal method for obtaining an optimal temperature distribu-
tion in a 3D triple-layered skin structure embedded with
two countercurrent multi-level blood vessels and induced
by electromagnetic radiation. The length and size of a
blood vessel, as well as the mass flow of blood, are deter-
mined based on the constructal theory of multi-scale tree-
shaped heat exchangers (for the newest review, see [41]).

The method consists of pre-specifying the temperature
elevations to be obtained at the center and the edges on
the skin surface, calculating the heat by solving Maxwell’s
equations coupled with the Cole–Cole expression, obtain-
ing the temperature distribution by solving the 3D Pennes
bioheat equation coupled with the heat transfer equations
for blood, and optimizing the amplitude of the EM wave
by using the least squares method. Numerical examples
show that the method is applicable and efficient. Results
could be useful for certain types of hyperthermia cancer
treatment, such as skin cancer. Further study will focus
on these cases with more complicated dendritic countercur-
rent multi-level blood vessels and mound-shape skin sur-
face (tumor protuberating on the surface).
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